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less than those given in Table I. Table II gives the value of s corresponding to 
each value of k. 

However this method of producing solutions to (A) with a small number of 
terms is subject to the following weakness. We had assumed that from any particular 
solution to (A) solutions of higher degree would be generated containing the least 
number of terms s, so long as the most frequent difference d was used at each step. 
After producing the following results this assumption was seen to be false. 

When forming Table I the multiplier (1 - x) was used with fl~= (1 - xi) 
to produce a solution to the extended problem where s = 22 for k = 11. This is 

1 
equivalent to starting with the solution 0, 2 = 1, 1 and using Theorem 2 with 
d = 2, 3, * * ,11. Table III compares the lengths of the solutions generated in this 
manner with those generated from the same initial solution but using the most 
frequent difference d at each step. 

Thus, by a more careful choice of d, the length of solutions can be decreased 
for k = 6, 7, 8, 9, 10. But for k = 11 this produces a solution to the extended problem 
where s = 24. This solution is longer than that obtained from a sequence of solu- 
tions which was constructed from values for d that did not always represent the 
most frequent difference. 

Finally, although solutions to (A) for k = 6 and s = 7 exist, we proved that no 
such solution can be obtained from a sequence generated by any solution for k = 1 
and s = 2 using the most frequent difference d at each step. 

Although Theorem 2 was used to generate most solutions for k ? 9 where 
s = k + 1, it appears that for k > 10 it alone will not be sufficient. 

3. Acknowledgments. The author is indebted to Dr. Z. A. Melzak for his sug- 
gestions and helpful criticisms. 
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Numerical Solutions of the Diophantine Equation 
3 2 

y -x = k 

By M. Lal, M. F. Jones and W. J. Blundon 

Introduction. The distribution of squares and cubes differing by a given integer 
is very interesting [1] and has attracted many mathematicians over the past few 
centuries. Probably this is due to the fact that y3 - = k is the simplest of all 
nontrivial Diophantine equations of degree greater than two. The solution of this 
equation is equivalent to the problem of representation of numbers by binary cubic 
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TABLE 1 

Values of I k I with No. of Solutions ? 6 

K N+ N- K N+ N- K N+ N- 

17 0 8 1737 0 11 4977 0 8 
73 0 6 1792 3 3 5328 0 6 

100 3 6 1809 0 6 5400 0 8 
113 0 6 1872 0 7 5543 6 0 
207 7 0 1900 0 6 5696 3 5 
225 0 13 1999 6 0 5841 0 10 
252 1 5 2052 0 6 5887 4 2 
297 0 9 2071 6 0 6236 6 1 
316 1 7 2089 0 14 6400 4 7 
343 5 2 2188 5 1 6479 6 0 
368 7 1 2241 0 6 6625 0 6 
388 0 6 21)12 1 5 6908 5 1 
431 9 0 2351 10 0 6921 0 6 
496 6 1 2600 1 5 7057 0 11 
503 8 0 2628 0 9 7100 5 4 
512 1 5 2817 0 10 7232 0 8 
516 4 3 3025 0 11 7353 0 7 
568 0 7 3033 0 8 7568 0 8 
648 6 0 3332 6 2 7600 4 2 
676 6 1 3356 0 6 7785 0 8 
775 7 2 3592 1 5 7804 7 0 
828 5 1 3664 0 8 7948 0 6 
847 7 0 3807 11 0 8036 3 4 
873 0 9 3844 0 8 8225 0 11 
892 1 5 3896 11 0 8281 0 9 
964 4 3 3969 0 9 8289 0 7 
999 6 0 4032 2 4 8433 0 6 

1016 0 7 4087 7 0 8532 7 0 
1025 0 16 4112 0 10 8623 5 2 
1071 6 0 4220 6 0 8673 0 6 
1088 0 9 4312 0 10 8676 1 9 
1225 1 5 4329 0 7 8712 6 0 
1304 0 6 4356 0 8 8900 1 12 
1305 0 9 4481 0 12 9052 1 5 
1439 8 0 4598 4 2 9297 0 8 
1712 6 1 4600 1 5 9559 7 1 
1724 5 1 4672 0 7 9748 9 0 
1727 7 0 4799 7 0 9936 0 6 
1729 1 5 4825 0 7 9967 6 0 

forms [2]. Thus the solution of the indeterminate equation of third degree 

(1) y3 - x2 = k 

is equivalent to solving a finite number of equations (a, b, c, d) = 1, where (a, b, c, d) 
is a binary cubic form. 

At present, very little is known about the theory of binary cubic forms. In this 
respect, the theory for negative discriminants is better developed and for 
0 < - k ? 100, all solutions of (1) have been found [3]. However for positive dis- 
criminants, progress has been rather slow and for the equivalent positive range, 
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TABLE 2 

Number of solutions 
Range of y 

Positive K Negative K 

-21 _ y < 0 0 1774 
0 < y < 102 2140 2669 

102 ?< y < 103 712 649 
103 < y < 104 294 185 
104 < My < 105 46 lO4?y~~~~~l05 ~~64 66 
105 < y < 106 13 23 
106 < y < 4.64 X 106 0 4 

Total 3223 5370 

20 cases remain to be resolved [3], [4]. For Ik > 100, it appears that complete 
solutions are lacking. It was therefore felt desirable to obtain solutions of (1) by 
means of a numerical search. 

This search was conducted with 

kII <? 9999, kI # 0 and 

'O ? x < 101. 

These parameters fix the range of y to be 

-21 < y < ymax; ymax = 4,641,589. 

We anticipate that the results of such an extensive search will be useful for 
checking some of the conjectures concerning this equation and also provide further 
insight into the theory of binary cubic forms. 

Method. By rewriting (1) as 

x = y -k 

then, for a given y, x is bounded by 

Xmin < X < (y3 + 9999)1/2; Xmin = (y3 _ 9999)112 

Thus, if y is large, the possible values of x in this search are severely limited. 
There are two methods of finding the starting values of x for a given y. 
(1) To compute the square-root directly. 
(2) To compute it by a search routine. 
A routine was programmed, using the fact for y > 21, Xmin is a monotonic in- 

creasing function of y. This was found to be considerably quicker than (1) and was 
used throughout. 

Results. The final output is rather large and it is intended to deposit a copy in 
the UMT file. A limited number of copies have been retained by the authors for 
distribution to interested mathematicians. 

The tables contain all solutions found in ascending order of k as well as a sum- 
mary giving the total number of solutions for each value. 
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The present paper contains in Table 1 a somewhat shortened version of that 
summary, and lists all values of I k I for which six or more solutions were found. 

We summarize some of our results as follows: 
(1) For positive k ? 100, no solution could be appended to the Table in [3]. 
(2) For negative k ? -9999, the last solution found was 

(1,775,104)3 - (2,365,024,826)2= -5412; 

whilst, for positive k < 9999, the last solution was 

(939,787)3 - (911,054,064)2 = 307. 

(3) In addition to solutions for I k ? < 9999, we have solutions, for y > 104 
and I k ? < 99999; there are 1221 for positive k and 799 for negative k. 

The vast majority of solutions are with y < 100 and Table 2 gives the number 
of solutions for various ranges of y. 

The fact that the number of solutions is a rapidly decreasing function of y 
suggests that for at least some k the solution set may be complete. 

Memorial University of Newfoundland 
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Experiments on Gram-Schmidt Orthogonalization 

By John R. Rice* 

1. Orthogonalization Procedures. In this note we present a brief resume of 
some experiments made on orthogonalization methods. We have a set 

jui I i 1, 2, ... , n} of m-vectors and wish to obtain an equivalent orthonormal set 

Ivi Ii 1, 2, ... , n} of m-vectors. We consider the following methods: 
(a) Gram-Schmidt (GS). vi = ui/11 u, 11. 

k-1 

Vk= Uk - x (V , Uk)Vj, Vk = Vkf/|| Vk ||; k = 2, , n. 
j=l 

(b) Modified Gram-Schmidt (MGS). v1 = ul/II u, 11, 

Uj'l = u- (uj, VO~V1, j =2, ... , n. 

Vk = Uk(k-1) /||Uk(k-1) 1I1 

(k) (k-i) (k-1) 
k = 2 n. 

u( = uj _ (jk Vk)Vk j k + 1, ... n 
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